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Abstract

A number of important questions in ecology involve the possibility of interactions or

“coupling” among potential components of ecological systems. The basic question of

whether two components are coupled (exhibit dynamical interdependence) is relevant to

investigations of movement of animals over space, population regulation, food webs and

trophic interactions, and is also useful in the design of monitoring programs. For example,

in spatially extended systems, coupling among populations in different locations implies

the existence of redundant information in the system and the possibility of exploiting

this redundancy in the development of spatial sampling designs. One approach to the

identification of coupling involves study of the purported mechanisms linking system

components. Another approach is based on time series of two potential components of

the same system and, in previous ecological work, has relied on linear cross-correlation

analysis. Here we present two different attractor-based approaches,continuity and mutual
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prediction, for determining the degree to which two population time series (e.g., at different

spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional

predator-prey model system exhibiting complex dynamics. Of particular interest is the spa-

tial asymmetry introduced into the model as linearly declining resource for the prey over the

domain of the spatial coordinate. Results from these approaches are then compared to the

more standard cross-correlation analysis. In contrast to cross-correlation, both continuity

and mutual prediction are clearly able to discern the asymmetry in the flow of information

through this system.

Key words: Chaos; Mutual prediction; General Synchrony; Attractor Reconstruction;

Continuity; Nonlinear systems.

1 Introduction

Ecological systems and their constituent populations vary over time and space, and

a central goal of ecologists is to develop mechanistic explanations for such variation

that can be used for prediction (Rhodes et al., 1996; Ranta et al., 1997; Koenig,

1999; Bjørnstad and Grenfell, 2001; Keeling and Rohani, 2002). A class of mech-

anistic explanations of special interest to ecologists involves some kind of “cou-

pling” (dynamical interdependence) among system components. For single-species

populations in different locations, coupling usually requires movement among loca-

tions. This movement may involve changes in residence location (dispersal; Clobert

et al., 2001) or regular shifts between seasonal residences (migration; Webster

et al., 2002). For an ecological community in a single location, coupling among

multiple species typically involves some sort of mechanistic ecological interaction

such as competition (e.g., Durrett and Levin, 1998) or predation (e.g., Hastings,
�
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2001; Tobin and Bjørnstad, 2003). For a community studied in multiple locations,

coupling mechanisms can include both movement and interspecific interactions.

There are two general approaches to drawing inferences about coupling in eco-

logical systems. One approach is to directly study the mechanisms themselves. For

example, one might study movement of animals among different locations in a

system of interest (e.g., Spendelow et al., 1995; Blums et al., 2003) or predation

by one or more species on populations of prey (e.g., Karanth and Sunquist, 1995;

Krebs et al., 1995; Korpimaki and Krebs, 1996). The other approach to the study

of coupling is less direct and involves joint analyses of time series data either from

one or more species at multiple locations or from potentially interacting species at

the same location(s) (Ranta et al., 1997; Koenig, 1999; Bjørnstad et al., 1999a,b;

Bjørnstad and Grenfell, 2001; Tobin and Bjørnstad, 2003). In this paper, we focus

on the second approach and on efforts to detect coupling between two potentially

interacting systems based on time series of state variables characterizing system

dynamics.

Assume that we have measured state variables such as population size at two

nearby locations over a large number of years or generations or other time intervals

of interest. From these data, we would like to draw inferences about the existence,

strength, and even direction of possible coupling of the populations and their

associated dynamics (which are needed to both parsimoniously specify the current

state of the system, but also to predict expected system change). The traditional

approach of ecologists to such inferences focuses on spatial covariance in popula-

tion dynamics and uses cross-correlation, typically with time lag 0 (Ranta et al.,

1997; Bjørnstad et al., 1999a,b; Koenig, 1999; Keeling and Rohani, 2002; Post

and Forchhammer, 2002). Specifically, the Pearson product-moment correlation

coefficient is computed between either population sizes or rates of change in
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population size (ratios of abundance in successive sampling periods) in the two

locations. Use of rates of population change, rather than population size itself,

is intended to exclude correlations that might arise from simple time trends in

abundance. Positive correlations resulting from such analyses are interpreted as

evidence of, and sometimes even used to define, population synchrony (Post and

Forchhammer, 2002). In addition, moment closure methods have been suggested

for accomodating higher-order correlation densities, which may provide a better

description of system dynamics in some cases (Dieckmann et al., 2000).

Cross-correlation is based on linear measures and addresses the existence of a

specific kind of functional relationship between time series. For linear systems,

cross-correlation is adequate to detect and describe dynamical interdependence

of pairs of system state variables, where “dynamical interdependence” essentially

means that the state variables are both components of the same dynamical system

(e.g., Schiff et al., 1996). However, small linear correlation does not imply that

other (nonlinear) functional relationships do not exist (Pecora et al., 1995). The

nonlinear dynamics that characterize at least some biological populations and

communities (Schaffer, 1985; Schaffer and Kot, 1986; Constantino et al., 1995,

1997; Dennis et al., 1995, 1997) argue for the use of a more general approach to

assessment of dynamical interdependence.

Another limitation of linear cross-correlation is the symmetric nature of the

function. The influence of the dynamics of one component of an ecological system

on the dynamics of another component, and hence the flow of information in

such a system, are frequently asymmetric. For example, in the strict source-sink

system described by Pulliam (1988), the source population is not influenced by

dynamics of animals in the sink, whereas sink dynamics are largely determined

by dynamics of the source population. Linkages among food web components are
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frequently asymmetric, and the concepts of top-down versus bottom-up regulation

(e.g., Harrison and Cappuccino, 1995) are based on such asymmetries. Monitoring

programs for ecosystems frequently are based on the concept of “indicator species”.

This concept is based on the premise that dynamics of some system components

carry more information about the system than dynamics of other components.

Identification of such asymmetries in information content is important to the design

of monitoring programs. General methods able to identify asymmetries in influence

or information flow among system components would thus be useful to ecologists.

A more general approach than looking for a specific (e.g. linear) functional

relationship between two time series involves first reconstructing the dynamics of

the two systems, for example using attractor reconstruction via delay coordinates

( Sauer et al., 1991; Williams, 1997; Kantz and Schreiber, 1999), and then gen-

erally asking whether the attractors are related by a function. Takens’ embedding

theorem (Takens, 1981) states that the trajectory of a dynamical system in phase

space can be reconstructed from a time series of a single state variable from the

system. Thus, a functional relationship must exist between attractors reconstructed

from different state variables from the same system. The possibility of dynamical

interdependence can be investigated by drawing inferences about the properties of

potential functions relating two reconstructed attractors. In this paper, we use two

approaches to this type of inference, mutual prediction (Schiff et al., 1996) and

continuity statistics ( Pecora et al., 1995; Pecora and Carroll, 1996; Moniz et al. in

press).

Continuity tests for the existence of a mapping from one time series to another

i.e.: does a functional relationship exist? This same test, applied in reverse, can test

for the mathematical concept of injectivity, i.e points that are close together in the

second time series are also close together in the first. Mathematical definitions of
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continuity, injectivity and the practical implementation of this test are discussed in

section (2.3). Given that a relationship exists, one can determine the degree to which

one time series predicts the other. In fact, measures of predictability have been used

as a test of continuity between time series data (Schiff et al., 1996). Certainly, if one

time series can predict the other, the two are related by some function. The concept

of mutual predictability is discussed in section (2.4). Both tests are then applied to

data collected from a spatially extended predator-prey model exhibiting complex

dynamics and used to determine the degree of coupling between spatially extended

time series. Comparisons are made between continuity, mutual prediction, and the

more standard approach of using cross-correlation in order to quantify the degree

of coupling. Results highlight the clear inability of the cross-correlation function to

extract the relevant, and in this case asymmetric, dynamical relationships between

ecological time series. Results also indicate the subtle yet important differences

between continuity and mutual prediction. Although they are ostensibly measur-

ing the same thing the implementation can lead to non-trivial differences in the

information they provide. In light of these important differences these two metrics

should be viewed as complementary to each other rather than as alternatives.

2 Time Series Analysis for Inference About Coupling

2.1 Cross-correlation Analysis

The standard approach of ecologists for assessing the degree of coupling between

time series at different spatial locations is the cross-correlation function. Given two

time series, x
�
n � and y

�
n � , the linear cross-correlation is computed via the cross-

covariance,
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i
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x
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�
y

�
i ��� ȳ �2


 (2)

Cross-correlation values for negative lags may be obtained by noting that rxy
� � k ���

ryx
�
k � . By design, this particular metric is testing for the presence of a linear

functional relationship between the dynamics of x and y. Values near unity are

a strong indicator that such a relationship exists while those near zero imply the

absence of coupling. The cross-correlation function will typically fluctuate as a

function of delay (phase) k. It is therefore convenient to quantify the coupling

strength by taking the maximum of Eqn. (2)

γR
xy � max � rxy

�
k ��� k � 1 	
	�	 N (3)

where the superscript R will be used to denote “cross-correlation”. This particular

metric is the current standard in ecological investigations and has been used in a

variety of applications (e.g., Ranta et al., 1997; Bjørnstad et al., 1999a,b; Koenig,

1999; Post and Forchhammer, 2002).

2.2 Attractor-based Methods: Review of Phase Space Analysis

The other two approaches to inference about coupling, continuity and mutual

prediction, are based on phase space analysis and attractor reconstruction. Assume

the dynamics of a system evolve according to ẋ
�
t ��� F

�
x

�
t � � x ��� d . An alternative
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to time or frequency domain descriptions of the dynamics is to view the system

output in the d � dimensional space defined by the state variables x, or, phase space.

An initial condition x
�
0 � will, under the action of F, asymptotically approach a

subset of phase space referred to as the system’s attractor X . The attractor may be

thought of as a geometric object (a collection of points) in phase space to which a

set of nearby trajectories approaches. In practice one simply plots the measured

variables against each other and then uses the resulting steady state, geometric

portrait of the dynamics to describe the system. For example, the attractor for the

well known two dimensional Lotka-Volterra predator/prey model is visualized by

plotting predator vs. prey (x1 vs. x2). A variety of attractor-based metrics exist

for quantifying various aspects of system dynamics, and these metrics have seen

some use in ecology (Schaffer, 1985; Schaffer and Kot, 1986; Hastings et al., 1993;

Pascual, 1993; Little et al., 1996; Pascual and Levin, 1999; Pascual and Ellner,

2000)

For certain systems the practitioner may be unable to measure, or even identify,

each of the system’s state variables. In this case we make use of a collection of pow-

erful mathematical theorems referred to collectively as the embedding theorems.

The theorems are generally credited to the early work of Whitney (Whitney, 1936)

and later Takens (1981) and have been generalized in subsequent work by Sauer

et al. (1991), and more recently, Ott and Yorke (2003). Using a single measure of

system response (time-series of a single state variable), the complete state vector

may be qualitatively reconstructed at any point in time via

X � x
�
n � � �

x
�
n ��� x �

n
�

T � ��	
	�	 � x �
n
� �

m � 1 � T � � 
 (4)

Here boldface type denotes a vector and the upper-case X is used to represent the

entire ensemble of points comprising the attractor. The reconstructed pseudo-state
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vectors are simply delayed copies of the original time-series and will qualitatively

preserve the dynamics of the ”true” underlying system provided that the delay T

and embedding dimension m are chosen properly. Suggestions for these choices are

given by Fraser and Swinney (1986) and Kantz and Schreiber (1999) for delay and

Kennel et al. (1992) for embedding dimension.

2.3 Attractor-based Methods: Continuity

Continuity of a function f at point x0 in a domain X implies that for every

neighborhood V of f
�
x0 � there must exist a neighborhood U around x0 such that all

points within U map into V . The precise mathematical definition is as follows: for

every x0 � X ,
�

ε � 0 � δ � 0 such that � x � x0 ��� δ ��� f
�
x ��� f

�
x0 ����� ε. In other

words, for a given set V of points in a local region of size ε on the f
�
X � attractor,

there is a corresponding δ-sized set U on the X attractor from which points in V

originated. A schematic illustrating the concept of continuity is shown in Figure (1

left). Points within the δ-ball on the “source” attractor are mapped via the function

F into an ε-ball on the second “target” attractor. A lack of continuity is therefore

indicated by points in the δ-ball failing to map into the ε-ball (Figure 1 center). If a

function between source and target is indicated but the inverse relationship is not,

this indicates that the population in the target region depends on the source, but the

source does not depend on the target. Typically, this means that dynamics in the

source are somehow collapsed onto the target by the function. The situation where

F � 1 fails to be continuous is depicted in Figure (1 right).

Assuming for now that the data do not include noise, implementing the definition

algorithmically is straightforward. In the context of spatially distributed systems

we are searching for the existence of the function f between data collected from
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two different spatial locations. We begin with two N-point attractors x
�
n � and

y
�
n � n � 1 	
	�	 N either measured directly or reconstructed using equation (4). These

two attractors will be referred to as the “source” and “target” respectively. A fiducial

point is chosen randomly from the source as x
�
f � and the near neighbors located

as x
�
pi � : � x �

pi ��� x
�
f � � � δ � i � 1 	
	�	 nδ. The corresponding neighborhood on

the target attractor is given by the points with the same time indices, y
�
pi � . We

then check to see if � y �
pi � � y

�
f � � � ε, denoting the number of points that meet

this criteria nε. Of course, not all points will map into the ε neighborhood even in

there is continuity between the two data sets. If a point in the source neighborhood

is present due to noise (e.g. measurement error), that point will most likely not

map into the target neighborhood. Making the algorithm practical therefore requires

making a probabilistic judgment with respect to how many points from the δ region

are required to map to the ε region.

We establish a relevant null hypothesis by assuming that points from the given δ-

ball map to points in the ε-ball by a coin flip. In order to reject the null(equivalently,

to accept the δ � ball as passing the continuity test for this ε), we must lie in

the tail of the binomial distribution. Thus, we must have 95% confidence that the

points from the δ-ball did not map to the ε ball by guessing. To quantify this, the

probability of each x in the δ-ball mapping inside the ε-ball is 
 5. Then for nδ points

in the δ ball, we find the number nε of corresponding points in the ε ball. The null

hypothesis is rejected with 95% confidence for this ε if

nδ

∑
j � nε

�����
�

nδ

j

������
� � 
 5 � j � 
 5 � nδ � j � 
 05 � (5)

That is, if the probability of having nε or more of the nδ δ-ball points land in the
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ε-ball by chance is less than 
 05. We formulate the statistic to be based not on the

acceptance or rejection of the null hypothesis, but on the minimum ε that can be

used to reject the null hypothesis at each point. We call this value ε*. This is the

smallest ε for which a δ can be found to reject the null hypothesis.

We perform this computation about some number of fiducial points N f and take

the average value as the measure reflecting continuity between the data X and Y via

γC
xy �

1
N f

N f

∑
f

ε � f (6)

where superscript C denotes “continuity”. The continuity statistic for known func-

tional relationships, e.g. between one spatial location and itself, provides the base-

line γC
xx . Values of γC

xy for other proposed relationships are then computed and

compared to this baseline to suggest existence or non-existence of a functional

relationship between the source and the target. Note that this is a one-way statistic;

the existence of a function from source to target does not guarantee the existence of

a continuous function from target to source. The continuity of an inverse function

can be tested by reversing source and target and finding ε*s for the proposed inverse

function (see again Figure 1 right). This property is what allows the continuity

metric to expose asymmetries in the data.

2.4 Attractor-based Methods: Mutual Prediction

The Mutual Prediction algorithm assesses the degree to which the dynamics of

one signal or attractor can be used to predict the dynamics of another. If one

set of data can accurately forecast points on the other set, the two systems are

assumed to be coupled in some fashion implying dynamical interdependence. The

mutual prediction algorithm has also been used to establish continuity between

11



time series Schiff et al. (1996); yet is different from the above described continuity

test in a very important way (to be described). These two algorithms, continuity

and mutual prediction, should therefore be viewed not as competing metrics for

assessing continuity, but instead as alternatives for establishing the existence of a

functional relationship between time series.

As with the continuity metric, let x(n) be the attractor at location 1 and y(n)

be the attractor at location 2. We wish to see the degree to which the dynamical

description at location 1 can be used to forecast values on the attractor at location

2. A fiducial trajectory (i.e. a point) is randomly selected on attractor 2 as y(f). The

neighborhood local to this point is then selected from the attractor at location 1 as

x
�
pi � : � x �

pi � � y
�
f � � � ε i � 1 	�	�	 nε. Note the time indices pi need not have any

temporal relationship to the fiducial point, as the selection of the neighborhood is

made using only geometric considerations. This local neighborhood can then be

used to make the forecast.

ŷ
�
f
�

s � � 1
nε

nε

∑
i � 1

x
�
pi
�

s � 
 (7)

Equation 7 makes a zeroth order prediction of the dynamics at location 2 using the

description at location 1. A measure of dynamical dissimilarity is then introduced

as

γM
xy �

1
mσ2

x
� ŷ �

f
�

s � � y
�
f
�

s ��� (8)

where the normalizing constant is the variance of the first time series, σ2
x �

1
� �

N � 1 �
N
∑

n � 1

�
x

�
n � � x̄ �2 (overbar denotes mean) multiplied by the dimension of

the attractor. Because the prediction is made in m dimensions the error is resolved

with the operator � 	 � which takes the Euclidean distance between observed and

predicted values. An illustration of the algorithm is provided in Figure 2 where the
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attractor at location 1 is used to forecast points on location 2. Similar dynamics

result in low prediction errors while errors close to unity occur for two dissimilar

processes.

Implementation of this scheme requires both a choice of ε and a mechanism for

dealing with sparsely populated neighborhoods. With regard to the latter, if no near

neighbors can be found, the best possible prediction is to choose the mean of the

time series as the future value i.e. ŷ
�
f
�

s � � x̄
�
n � . Choice of ε is typically made

such that the neighborhoods reflect local dynamics, yet are large enough so that

a sufficient number of points (on average) can be found in the neighborhoods. A

conveniant rule of thumb, used by the authors and others, is to choose 0 
 01σε0 
 1σ

where σ is the standard deviation of the time series.

Mutual prediction is different from continuity in that the neighborhoods being

compared are established through purely geometric considerations (as opposed to

using the same time indices when establishing neighborhoods in continuity). It is

therefore entirely possible to have excellent continuity and large prediction errors.

Even for small ε � if there exist no near neighbors on x
�
n � (in a geometric sense)

to the fiducial point y
�
f � , the prediction will be poor. Likewise, there can exist

poor continuity and small prediction errors. Again, dynamics that evolve in similar

fashion at similar attractor locations are all that is required for good predictability

whereas good continuity requires temporally associated neighborhoods to remain

local (i.e. have a small ε*). In many situations, however, these two metrics tend to

produce similar results and both can be used effectively to assess the directionality

of information flow in nonlinear, spatially extended systems.
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3 Numerical Model

In order to contrast the three approaches to assessment of coupling, a spatially

one-dimensional predator-prey model was considered. The model was introduced

by Pascual (1993) and explored further by Little et al. (1996) and describes the

evolution of the prey p and predator h according to

∂p
∂t

� rx p
�
1 � p � � ap

1
�

bp
h
�

d
∂2 p
∂x2

∂h
∂t

� ap
1
�

bp
h � mh

�
d

∂2h
∂x2

rx � e � f x 
 (9)

The dimensionless variables p � h � and x represent the prey density, predator density,

and spatial coordinate, respectively. Reflective boundary conditions are considered

at x � 0 � 1 as ∂p
∂x � ∂h

∂x � 0. Parameters are the predator death rate, m, diffusion

coefficient d, the predator/prey coupling a, the prey carrying capacity b, and the

intrinsic growth rate rx of the prey population, which is (for non-zero f ) a function

of space. The resource term is a linearly declining function of space with value r0 �
e � const 
 at the boundary. The parameter f governs the rate of resource decline

and hence the degree of spatial asymmetry. As in Pascual (1993) the death rate,

diffusion coefficient, boundary resource, and carrying capacity are fixed at m �
0 
 6 � d � 10 � 4 e � 5 
 0 b � 2 
 0.

In the absence of diffusion, this system possesses three fixed point (equilibrium)

solutions

FP1 � 2 � 3 �
�
p � � h � � � � �

0 � 0 � � �
1 � 0 � � �

m
� �

a � mb � �
�
a � �

1
�

b � m � �
e � f x ��

a � bm � 2 ���
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The stability of these equilibria is largely governed by the coupling coefficient a.

The eigenvalues λ of the Jacobian of Eqn.(9) evaluated at FP2 � 3 (FP1 is the trivial

solution) give the following results. For a � 3 
 6 the stable solution is given by

FP2 � �
1 � 0 � at every point in space. For a � 3 
 6 this point becomes universally (for

all x) unstable and all trajectories at all spatial locations migrate toward FP3. This

new solution remains stable for 3 
 6 � a � 4 
 5, however the type of stability varies

as a function of x. As a is increased the eigenvalues of the Jacobian begin taking

on imaginary parts. In the case of f � 1 
 9, for example, perturbations to FP3 for

3 
 65 � a � 3 
 95 progress from exponential decay to oscillatory decay in a cascade

starting at x � 1 as the imaginary parts of λ become positive (see Figure 3c). Then,

for a � 4 
 5 each of the lattice sites simultaneously (independent of x) undergoes

a Hopf bifurcation with the oscillations occurring at different frequencies, dictated

by the imaginary parts of the eigenvalues. Figure 3d) shows the variations in Im
�
λ �

with x for three different values of resource slope. The steeper the slope in the

resource term, the more disparate the frequencies of oscillation as the location is

changed from x � 0 to x � 1. The interplay between variations in frequency with

x, and the coupling made possible by the addition of the diffusive term are most

likely necessary for complex dynamics. Earlier work on this model (Pascual, 1993)

showed that for d � 10 � 4 the system in fact does exhibit chaos.

Figure 4 illustrates the effect of changing the slope f on the resulting phase plots

of p vs. h. Clearly the dynamics are more complex near x � 1 as the presence of

multiple frequency components are visible in the attractors. This is in contrast to

the attractors at x � 0 which exhibit only a single frequency limit cycle oscillation.

One possible reason for the asymmetry concerns the average number of predators

as a function of space. From the fixed-point analysis, FP3 is a linearly decreasing

function of x for the predator term (this is also evidenced in the attractors of Figure
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4). Therefore, far fewer predators exist, on average, near x � 1. This is important

when considering the coupling term d ∂2h
∂x2 . By numerical approximation this term

is given by
�
d

�
∆x2 � �

hi � 1 � 2hi
�

hi � 1 � where ∆x is the spatial resolution and the

notation hi denotes the predator population at the ith lattice site. If the number of

predators is larger at site i � 1, the dynamics at that site will have a larger influence

on the dynamics at site i then will those at site i
�

1. By this mechanism, information

at lower spatial indices (higher resource abundance) can more easily influence the

dynamics at higher indices (lower resource abundance). The dynamics near x � 1

therefore show an increased complexity as those sites are influenced by all other

sites for x � 1. Within-site processes should be more important to the dynamics

of high-resource sites (small x), whereas immigration from other locations are

expected to be more important to the dynamics of low-resource sites (large x). As a

result, dynamical information tends to propagate “downhill” toward regions of low

resource abundance.

4 Application of Approaches to Assessment of Coupling

We sought to use the spatial predator-prey model to investigate the three described

approaches to assessment of coupling. Specifically, predator and prey dynamics

throughout the spatial system are coupled via predator-prey interactions and move-

ment. Thus, we can assess the evidence of coupling, for example, between predator

and prey dynamics at the same or any other site. We expected the two attractor-

based approaches to be perhaps more sensitive to coupling, as they are appropriate

for use with nonlinear systems, whereas cross-correlation is not guaranteed to work

well with such systems. As discussed above, we also expected the system to exhibit

an asymmetric flow of information, which we expected to be detectable with the
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two attractor-based methods and not with cross-correlation.

Using a finite difference scheme, Eqns (9) were integrated for N � 10 � 000 time

steps (post-transient) with a dimensionless sampling time of 0.5. The dominant

frequency for this system is � 0 
 065 cycles per unit time so that this sampling rate

was deemed sufficient to capture the dynamics. Simulations were performed on a

spatial grid consisting of 100 sites, distributed evenly on x � �
0 � 1 � . Three different

resource slopes were used f � 0 
 9 � 1 
 4 � 1 
 9 in order to study the effects of the re-

source gradient on the resulting spatial coupling. Prior to the analysis all time series

were normalized by subtracting their mean and dividing by the standard deviation.

Simple changes in population mean and/or variance are therefore removed from

consideration here. The analysis of coupling focused on the relationship between

predator/prey density at one site and predator/prey density at the same or another

site. The attractor at a given location x may therefore be defined in terms of the

predator and prey populations at that site as X � � �
px

�
n � � hx

�
n � � n � 1 	�	�	 N.

For each of the approaches described in section 2, comparisons were made using

data recorded at locations x � 0 
 01 � 0 
 05 ��	�	
	 � 1 
 0 resulting in the 20 � 20 cross-

correlation, continuity and mutual prediction matrices γR
xx � � γC

xx � � γM
xx � x � x � � �

0 � 1 � . In

an effort to place the three metrics on the same general scale, we take 1 
 0 � γR
xx � as

the metric of interest. Under this transformation, continuity, mutual prediction and

cross-correlation metrics near zero indicate strong coupling, whereas values near

unity are indicative of weak coupling.

Figure (5) shows the cross-correlation, continuity, and mutual prediction statis-

tics reflecting coupling between the data for predator/prey density at one site and

predator/prey density at another site. All metrics show the strongest evidence of

coupling on the diagonal, as expected. Population dynamics at nearby locations are

more likely to be strongly coupled than those with a large separation. As the pair
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of sites being analyzed become more distant, all measures show a degradation in

the coupling. However, unlike correlation, continuity and prediction error clearly

show the asymmetry associated with the flow of animals and information along the

resource gradient. For the f � 0 
 9 case the system dynamics are strongly coupled

over most distances. The dynamics at most of the lattice sites are confined to

near-periodic behavior as illustrated in Figure 4, resulting in strong continuity and

predictability. Continuity strongly resembles autocorrelation but is clearly capable

of resolving differences in the coupling direction. Source values taken near the

high resource end of the system (x � 0) tend to require large ε � values when being

compared with time series at the low resource end (x � 1). However, reversing

the source/target relationship reveals a different pattern. Taking source values near

x � 1 shows stronger continuity when compared to targets at the high resource end.

Cross-correlation, on the other hand, cannot by definition resolve these differences.

Results obtained using mutual prediction show similar asymmetries with one im-

portant difference. Comparing extremely low vs. extremely high lattice sites can

actually result in excellent mutual predictability. Again this can be seen in part by

analyzing the attractors observed at these sites. Due to the boundary conditions,

attractors near x � 0 and x � 1 possess similar geometry, hence, tend to have good

mutual predictability. Results using the mutual prediction algorithm were based on

ε � 0 
 025 however we note that similar results were obtained for ε in the range

0 
 01 � ε � 0 
 1.

Results for the f � 1 
 4 resource gradient are shown in the second column. These

data correspond to the gradient analyzed in Pascual’s original paper using this

model Pascual, 1993. For all metrics used the region of strong coupling decreases

relative to the previous gradient. Essentially a steeper resource gradient will result

in more dissimilar dynamics across the lattice sites. Again, continuity and mutual
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prediction detect the effects of the gradient. Both continuity and mutual prediction

indicate a stronger coupling examining the relationship from low resource to high

resource areas then in going from high to low. This is consistent with results

for f � 0 
 9. This particular directionality implies that dynamics nearer the high

resource end have a greater effect on those at the low resource end than vice-

versa. Essentially the gradient results in higher populations at the high resource

end. Consequently, through the nature of diffusive coupling (alluded to in section

3), those dynamics have more influence on those occurring at sites with smaller (on

average) populations. Conversely, dynamics at high resource sites are not strongly

influenced by movement from low resource sites. For the most part, continuity

and mutual prediction show similar features with one notable exceptions. Results

based on mutual prediction show much sharper gradients in transitioning from

regions of low to high predictability. This is a result of the way in which “sparse”

neighborhoods are dealt with. By predicting the mean when no near neighbors are

found, the transition from similar to dissimilar geometries is sudden in terms of the

resulting prediction error.

The final set of observations corresponds to f � 1 
 9. Again, there exists a

stronger functional relationship in the direction of decreasing resource than in

the other direction. Both continuity and mutual prediction show very pronounced

asymmetries in the coupling direction. Information about sites near x � 0 is avail-

able to sites near x � 1, but not vice-versa. Therefore, sites near x � 1 possess more

of the global system information and can therefore more accurately describe distant

dynamics. The reverse is not true. The dynamics at sites near x � 0 are influenced to

a much lesser degree by the dynamics at other locations and therefore fail in trying

to describe those dynamics. The cross-correlation metric is unable to detect the

asymmetry and shows identical correlations regardless of which site is considered
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the “base” site. The correlation coefficient gives what is essentially the worst case

scenario. Because of the symmetry in the computation of this coefficient, regions of

poor uni-directional coupling will appear as regions of poor bi-directional coupling.

One useful property of the correlation analysis as presented here, however, is that

it only requires one of the state variables (in this case we used p) to be recorded.

The attractor-based approaches on the other hand involve measurements of both

prey and predator dynamics to form the attractors at the various lattice sites. This

could conceivably give cross-correlation a practical advantage in such an analysis.

However, according to the embedding theorems, measurements of a single variable

can be used to qualitatively reconstruct the other provided that they are somehow

coupled through common system dynamics. In this case the coupling is explicitly

dictated by the parameter “a”. In order to illustrate the utility of attractor-based

approaches for meta-population systems in which animals at different sites are

coupled through movements of individuals of the same species, we repeated the

mutual prediction and continuity algorithms using only the observation p
�
n � to

form the attractor

X � �
p

�
n ��� p �

n
�

T � � p �
n
�

2T � �

where the optimal delay was chosen based on the mutual information function

as T � 7 time steps. The embedding dimension was chosen as m � 3 based on

the aforementioned false-nearest neighbors algorithm. Results using the attractor

reconstruction for f � 1 
 4 are shown in Figure (6) for both mutual prediction

and the continuity statistic. These results are similar to those found using both

observations of p and h to form the attractors. The continuity metric gives nearly

identical results using the delay coordinate approach as it does when one has access

to each of the state variables. The one apparent difference is that using delay

coordinates, the magnitude of the continuity metric increases. This can be explained
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in terms of the number of data, N, in the recorded time series. In the previous

approach we had access to N � 10 � 000 points for each of two the two measured

variables comprising our attractor (10,000 points per dimension). By contrast, the

delay coordinate approach “dilutes” the data in that we now have 10,000 points

(only 1 time series) spread into three dimensions, giving 3,333 data points per

dimension. As a result the data have a greater spread and the average ε � increases.

Mutual prediction suffers from this same effect. As before, there exists a clear

asymmetry in the directionality of the predictions, that is, attractors reconstructed

from lattice sites near x � 1 do a better job at predicting those near x � 0 than

vice-versa. However some of the detail is lost, for example, lattice sites near x � 65

are no longer able to make accurate forecasts for the dynamics at other locations.

The main point to make here is that much of the relevant dynamical information

is contained in a single variable. While it is advantageous to form attractors using

measurements of as many state variables as possible, pertinent information such as

the asymmetry in population flow can be preserved with only a single measurement.

Another important question deals with the size of the data set under consider-

ation. Even long time series of ecological data are limited to a few hundred or

possibly 1,000 points. In order to test the performance of these algorithms on

limited data, the analysis was repeated using 1,000 observations of the system

dynamics. Attractors were again formed using both predator and prey variables and

both continuity and mutual prediction algorithms were employed for the analysis.

The results are shown in Figure (7). Both sets of results clearly demonstrate an

ability to detect the asymmetry in spatial information flow using both mutual

prediction and continuity statistics. Due to the limited number of data the search

radius for the mutual prediction algorithm was increased to ε � 0 
 05. Qualitatively

few differences exist between these results and those obtained using 10,000 point
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time series. For this particular system, 1,000 points are sufficient for populating

the attractors such that the coupling between various spatial locations can still

be observed. For shorter data sets the practitioner will likely have to alter the

algorithms slightly. For example, the prediction error algorithm selects all points

within a radius ε and makes the forecast assuming equal weighting (1
�
nε) for all

points. More intelligent weighting schemes have been proposed (Little et al., 1996)

that may make better use of limited data. Another possibility is to make use of

kernel density estimation techniques (see Silverman, 1986). Rather than simply

counting points in an ε-ball, one may weight them according to their distance

from the fiducial trajectory. Parametric or semi-parametric approaches may also

prove useful when there exists some a priori knowledge of the distribution of the

underlying populations. Drawing inferences about asymmetry from short and/or

noisy time series may also require the use of surrogate data sets (Theiler et al.,

1992). Metrics computed from the population time series could be compared

against those obtained for the surrogates (where no coupling exists) in order to

better assess the significance of the result.

5 Conclusions

Both mutual prediction and the continuity statistics provided useful inferences

about dynamical interdependence (coupling) for this spatially-distributed predator-

prey system. Cross-correlation also provided evidence of coupling, although we

emphasize that cross-correlation is not guaranteed to perform well with nonlin-

ear systems. Perhaps more important, mutual prediction and continuity clearly

indicated the asymmetric flow of information and, thus, the directional nature of

the coupling in this system with a spatial gradient. Cross-correlation provides no
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information about such asymmetries.

Asymmetric movement of animals is a topic of great interest in the study of

spatial systems. For example, the concept of source-sink populations provides

an extreme example of asymmetric movement in which source populations may

contribute to sinks, but there is no movement in the opposite direction (Pulliam,

1988). Identification of sources and sinks is not only of theoretical interest but is

very important to conservation. Sink habitat may show large abundances of animals

at times, so abundance is not a reliable indicator of habitat quality (Horne, 1983).

Additional information about coupling is needed to make informed decisions about

relative efforts devoted to protection of different habitats. Models for the evolution

of dispersal frequently predict different rates of movement (inducing coupling

asymmetries) among population components with different suitabilities and abun-

dances. Hypotheses and associated models of habitat selection predict asymmetric

movement based on gradients among locations in expected fitness (Fretwell and

Lucas, 1970; Fretwell, 1972; Nichols and Kendall, 1995).

As illustrated by our example of a predator-prey system, continuity and mutual

prediction also should be useful in identifying asymmetries in the coupling of

food web components. In fact, these metrics should be useful in distinguishing

”top-down” and ”bottom-up” population regulation (Harrison and Cappuccino,

1995; Turchin, 1995), as these concepts can be viewed as manifestations of asym-

metric coupling. Indeed, consideration of the mechanisms underlying dynamical

interdependence in ecological systems leads us to hypothesize that asymmetric

coupling may be much more common in such systems than symmetric coupling.

The continuity and mutual prediction algorithms described herein provide tools

that permit investigation of this hypothesis using time series data.

In addition to theoretical and conservation importance of asymmetries in dy-
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namical interdependence, such asymmetries should be extremely relevant to the

informed design of animal monitoring programs. One of the two central problems

in the design of such programs involves sampling space in a manner that per-

mits inference about locations that are not sampled (Yoccoz et al., 2001; Pollock

et al., 2002). Because continuity and mutual information permit inference about

asymmetries in the flow of information, they should permit informed selection of

sample locations. For example, in large spatial systems with varying degrees of

coupling among potential sample units, it should be possible to select units that

are maximally informative about dynamics of either the entire system or specific

system components.

Although both continuity and mutual prediction provide inference about asym-

metric coupling, the two approaches do not yield identical inferences. Although

coupling can be detected by both approaches, we suspect that continuity may be

the approach of choice if the detection of dynamical interdependence is of primary

interest. An alternative objective will be to use information from an observed

system component to make predictions about another system component, or the

same component at a future time, in which case the prediction metric may be

utilized.

In summary, we believe that continuity and mutual prediction hold great promise

for the study of complex ecological systems, but we note that additional work

is still needed. In particular, the length of the time series necessary for these

approaches to yield useful results requires further investigation. While we have

demonstrated success using data sets as small as 1,000 points, further refinements

in the algorithms could extend their applicability to even shorter time series. In

addition, sampling variation is nearly always associated with estimates of the

state variables of ecological systems (e.g., Williams et al., 2002). The results
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reported in this paper are based on long time series without sampling variation

(measurement error). The next step is to investigate shorter time series of estimates

with measurement error in order assess the limits to the utility of these methods for

real-world ecological systems.
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List of Figure Captions

Figure 1. Illustration of the existence of a continuous function between source and

target attractors (left), the absence of such a function resulting in points from δ-

balls that do not all map to the ε-ball (middle), and A continuous function with no

continuous inverse i.e. points from the ε-ball have preimages in 2 disjoint δ-balls

and no continuity between hypothetical attractors (right)

Figure 2. Description of Mutual Prediction Algorithm

Figure 3. Cascade transition to oscillatory behavior as a function of “a” (left)

and differences in linearized frequencies as a function of “x” for varying resource

gradients (right).

Figure 4. Attractors (p v. h) at varying spatial locations for f � 0 
 9 � f � 1 
 4 � f �
1 
 9

Figure 5. Top row: Cross-correlation (1 
 0 � γxx � ), Middle row: Continuity, and

Bottom row: Mutual prediction for f � 0 
 9 � 1 
 4 � 1 
 9

Figure 6. Mutual prediction (left) and continuity (right) results based on delay

coordinate reconstruction

Figure 7. Mutual prediction (left) and continuity (right) results using 1,000 point

time series
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